3D Printing of Maritime Spare Parts Results and follow up pilot project

3D Printing for maritime & offshore?

Maritime

Offshore

Opportunities:

- Offshore: High 'downtime' costs
- Maritime: long lead time spare parts

Strengths:

- Positive business cases for AM in case of reduced lead times
- Just In Time production by AM

Weaknesses

- Lack of knowlegde by maritime industry about:
 - Different AM technologies
 - Available materials
 - Advantage of redesigns
 - How to redesign for AM
- Technological limitations

Initiative

Service providers (12)

MAKERSPACE

RUYSCH

Consortium:

- Maritime Industry
- **Classification Officers**
- 3D Providers
- Software provider
- Logistics (digital warehouse)
- Aerospace Industry (Fokker and NLR)

Project structure

What part has potential?

Product design

Part consolidation

AM allows production of unified parts, eliminating the need for assembly of multiple parts and it's associated costs.

Weight reduction

AM allows applying internal structures and topology optimization, this efficient design leads to weight reduction.

Integrated functionality

AM allows integrated functionality by use of complex geometries and interior structures such as cooling channels.

Less waste

The additive production process opposed to traditional subtractive processes leads to less material being wasted.

Supply Chain

Lead times

AM requires less steps in the production process, often leading to a decrease in lead time and costs.

Supplier risk

By qualifying a part for AM, you will no longer be completely reliant on your current supplier.

Inventory

The local and short production time of AM allows for on-demand production, which decreases need for inventory.

Location based costs

AM shows potential to overcome transport and import/export related costs by local production possibilities.

T-connector

Cooled valve

Hinge

Spacer ring

Propeller

Huisman

Which 3D printing production process?

Which material to use?

Theory: Powder bed and powder fed machines can process a wide range of powders than those offered by the machine manufacturers.

Practice: Materials selection based on alloys already being offered by machine manufacturers

EOS materials	DMG materials	Casting materials
316L, 1.452 (GP1), 1.4540 (PH1) 1.2709 (MS1) AlSi10Mg DirectMetal 20 IN625, IN718, HX (UNS NO6002) Ti64, Ti64ELI High Alloys Concrete Plastics	CuoAi 111023, 111/10,	Stainless steels Iron Aluminium High Alloys Concrete Plastics

T-connector

- + Reduced lead time
- + Form freedom
- -Traditional is cheaper > 5 pieces -Quality of forging vs. casting

Cooled valve

- + Reduced lead time
- Traditional part cheaper (minimum batch of 80 pieces)

Hinge

- + Weight reduction
- + Lead time reduction
- Room for optimization

Spacer ring

- + Reduced inventory risk
- Traditional part cheaper at the moment

Propeller

- + Part consolidation
- + Reduced lead time
- Lasertec still in research phase

Conclusions

From an economic perspective currently only applicable for:

- Nominally "unmanufacturable" components
- High added value, long lead time items
- Adding features to low yield castings and forgings
- Repair applications

Also...

- Costs of AM are going down exponentially
- Total cost of operation should be taken into consideration for fair comparison

Downtime costs

A standard northwestern European jack oil rig has average daily rates of \$150.000. * "For estimation purposes, a reasonable value (operating costs) can be had by simply taking the rig's day rate, and doubling it for transportation services, rentals, communication services, drilling services, support services, security services, shore-based support etc. [2]".

So an oil rig in the North Sea could have a downtime cost of (\$150.000 *2 / 24 =) **\$12.500 per hour of not being operational.**

*https://www.ihs.com/products/oil-gas-drilling-rigs-offshore-day-rates.html

Rise to the Challenge

- **Design**: Designers must be taught the performance and economics of 3D printing
- Quality control: standards are needed to assure that every part meets requirements
- 3D printing processes must be much more productive
- Supply Chains: (maintenance) companies need help to commercialize new 3D printing technologies
- Threshold to start innovating with 3D printing is high due to high initial investments ... but this is changing rapidly

Full report available at

https://www.portofrotterdam.com/sites/default/files/report-3d-printing-marine-spares.pdf

